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Experimental investigations of equilibration kinetics for a methanol-hexane
binary solution under gravity have been carried out at temperatures T below the
critical consolute temperature, T < Tc, by using a refractometry technique. As a
result of the experiment, both equilibrium nz(z, te) and nonequilibrium nz(z, t)
height dependences of the refractive index gradient nz at different times t after
the beginning of thermal equilibration have been obtained. Analysis of the data
shows that the relaxation properties of the system at different fixed heights are
determined not by a single relaxation time y(z), but by a spectrum of relaxation
times Syi(zj, t). On the basis of the experimental data, the height dependence of
the relaxation times has been analyzed for the studied solution in the course of
its transition to equilibrium. The average relaxation time y(z) has been shown to
decrease when nearing the phase interface (z=0). The relaxation time y(z, t) at
a certain height z has been shown to also decrease when the system approaches
an equilibrium state. A dynamic nonequilibrium equation of state has been
proposed on the basis of the fluctuation theory of phase transitions for a sub-
stance under gravity close to the phase interface of a binary solution. It is based
on the assumption that for small solution concentrations, (c − cc)/cc ° 1, every
nonequilibrium height distribution nz(z, t) corresponds to an equilibrium dis-
tribution nz(z, DT) at a certain temperature DT=T − Tc. Here, cc is the critical
concentration of the solution.

KEY WORDS: critical point; equation of state; inhomogeneous solution;
nonequilibrium state; phase interface; refractive index gradient.

1. INTRODUCTION

According to the fluctuation theory of phase transitions in liquid systems
[1, 2], the equilibration time te, which is proportional to the relaxation



time te ’ y ’ Rc, must increase infinitely in the vicinity of a critical point
due to infinite growth of the correlation length Rc. The relaxation proper-
ties of fluid systems near critical points were studied recently [3, 4]. It
should be noted that results for spatially homogeneous systems concerning
the significant growth of the relaxation times y and the equilibration time te

turned out to be incorrect for spatially inhomogeneous systems under
gravity close to the critical point [5, 6]. For example, it can be seen [7]
that even the microgravity effect considerably decreases the equilibration
times to te [ 24 h for weakly inhomogeneous systems near the critical con-
solute temperature. The equilibration time for essentially real inhomo-
geneous systems under gravity is much smaller. Such systems have been
systematically investigated at Kyiv National Taras Shevchenko University
[8, 9].

Our experimental studies of equilibration kinetics in such inhomoge-
neous systems [5, 6, 10–15] near the critical temperature have revealed a
whole spectrum of peculiarities in the behavior of inhomogeneous liquids,
which are not observed for homogeneous systems. A nonmonotonic tem-
perature dependence at temperatures T > Tc has been detected for the first
time for the equilibration time te(DT) of an inhomogeneous substance
under gravity [5, 6]. The longest time te=max corresponds not to the cri-
tical temperature Tc, but to a temperature DT=T − Tc > 0 above the criti-
cal value. It was proved for the first time that the time te depends not only
on the diffusion coefficient D(rc) or the relaxation time te ’ y(rc) ’

D −1(rc) ’ DT −n, but also on the thickness of the liquid layer Dz(DT) with
a critical density rc . It increases with temperature as Dz ’ DTbd [1, 16].
That is, te ’ y Dz ’ DTbd − n. So, when moving away from the critical tem-
perature, the equilibration time does not decrease, but increases. Only
after the moment when the thickness of the layer Dz will be equal to the
entire height L of the cell with a substance (Dz % L=const), the equili-
bration time in the system te ’ DT −n decreases when moving away from
the critical temperature. A nonmonotonic height dependence of the
relaxation time y(z) has also been obtained at temperatures T > Tc for an
inhomogeneous liquid under gravity [10–14]. Maximum values of the
relaxation time of density gradient rz or concentration gradient cz corre-
spond not to the level of the critical isochore (z=0) but to the heights
Dz ’ DTbd. Nonequilibrium isotherms of the refractive index gradient
(RIG) nz intersect at these heights when the system goes to the equilib-
rium state [10, 11]. It has also been detected for the first time [10, 11]
that the relaxation properties of the inhomogeneous liquid at a certain
height z are determined not by a single relaxation time, but by the spec-
trum of these times Syi(zj), which characterizes the entire inhomogeneous
system under gravity.
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The purpose of the present work is to continue the experimental
studies of the peculiarities in equilibration kinetics for the spatially inho-
mogeneous liquid systems in the vicinity of critical points. In particular, the
goal is to understand the time-dependent equation of state for such systems
under gravity for temperatures T < Tc.

2. MEASUREMENTS

The well-known Toepler method [17] was used as an experimental
technique for the RIG nz measurement. It has been described in detail pre-
viously [8, 18]. The methanol-hexane binary solution with a critical
methanol mass fraction cc=0.31 was poured into a thermally isolated
parallel optical cell. The solution mass was such that the vapor phase was
preserved above the studied liquid at all temperatures. First, the solution
was heated from the two-phase region at room temperature T=293 K to
the consolute critical temperature Tc=307.1 K. Then it was carefully
thermostatted for almost a day at this constant temperature (better than
0.01 K uncertainty) until the RIG at all heights of the inhomogeneous
solution remained unchanged. The critical temperature was associated with
the point of the phase interface disappearance. Shortly after, this inhomo-
geneous but equilibrium system was cooled rapidly from the critical tem-
perature to a selected temperature Ti < Tc. The system was kept at this
temperature long enough to achieve another equilibrium state at tempera-
ture Ti. The equilibration time te was defined as the interval elapsing from
the initiation of the quench until the RIG values nz(z) would essentially
remained changed. In the course of thermal equilibration at this tempera-
ture, the height and time dependences of the RIG nz(z, t) for the solution
were investigated by a well-known technique, as described elsewhere [8, 17,
18]. Such investigations were carried out for the series of temperatures
Ti < Tc. The error in the RIG nz(z, t) measurement is (1 to 3)% for the
heights z=0 to 1 cm.

3. RESULTS

3.1. Equilibration Kinetics

Figure 1 shows the kinetics of change of the symmetrized values of the
RIG nz(z, t)=1/2 {nz(z > 0, t)+nz(z < 0, t)} at different heights z in the
cell containing the inhomogeneous methanol-hexane solution for the
system approaching equilibrium at a temperature DT=T − Tc=−1.55 K.
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Fig. 1. (a) Three-dimensional surface of nz(z, t) for the inhomogeneous methanol-
hexane solution at temperature DT=−1.55 K below the critical consolute temperature. (b)
Time projections of kinetics of the refractive index gradient nz for different times t after
quenching (bottom curve corresponds to the equilibrium values of nz(z, te) — nz(z, he)).

Values of nz are determined at heights symmetric around the phase inter-
face z=0. The equilibrium state of the substance at this temperature was
achieved in 14 h after system cooling (te=14 h). Equilibration is charac-
terized by the height dependence nz(z, te) corresponding to the bottom
curve in Fig. 1b. It is obvious that for a transition to equilibrium, the
values of nz change the most at the level of the phase interface z=0. At
heights |z| \ 0.3 cm, the derivative nz(z) changes with time much more
slowly. For other studied temperatures DT the kinetics of change of nz is
qualitatively preserved.

Using the data represented in Fig. 1 and the following relation,

Dnz(z, t)=n
¯ z(z, t) − nz(z, te)=Dnz(z, t=0) exp(−t/y), (1)

the relaxation times y(z) have been calculated for nz(z, t) at different
heights in the studied system. The results of these calculations are shown in
Fig. 2. It is obvious that dependences ln(Dnz(t)) are not linear functions of
time. Consequently, at a selected height in the inhomogeneous system, the
equilibration kinetics is characterized not by a single relaxation time y(z),
but by a spectrum of relaxation times yi(zj). This is due to the fact that
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during transition of a system to its equilibrium state, the relaxation prop-
erties of any individual substance layer certainly depend on the solution
density and concentration at this height. Both of these substance charac-
teristics are changing continuously with time while the system approaches
equilibrium. It should be also noted that equilibration kinetics at a certain
height zi is likewise dependent on the relaxation properties of the rest of
liquid layers involved in mass transport, while system goes to its equilib-
rium state.

As can be also seen from Fig. 2, the average relaxation times
y(z)=[ln(nz(z, t1)) − ln(nz(z, t2))]/[t2 − t1] at all heights z decrease
monotonically when nearing the phase interface z Q 0. Here t1=3 h, and
t2=14 h.

It is obvious (Fig. 2) that the curvature of the dependences of
ln(Dnz(z, t)) becomes more pronounced with time. This is evidence of a
decrease of the RIG relaxation time (determined by the slope of the tangent
to the curve ln(Dnz(z, t))) in the course of the transition to the equilibrium
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Fig. 2. Equilibration kinetics of nz for the inhomogeneous
methanol–hexane solution at different heights at a tempera-
ture below the critical temperature [DT=−1.55 K].
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state. That is, the equilibration process is accelerated when the system
approaches an equilibrium state. Such behavior of y(z, t) is caused by the
fact that the solution concentration and density depart from their critical
values at all heights z at temperatures T < Tc when the system approaches
an equilibrium state.

3.2. Nonequilibrium Scaling Function

The experimental data nz(z, t) of equilibration kinetics of the solution
were used to develop a dynamic scaling equation of state for a substance
under gravity close to the critical point. Analysis of the height and time
dependences of the RIG or concentration gradient nz ’ cz(z, t) has allowed
the assumption that the equilibrium properties of a substance for different
temperatures h=|T − Tc |/Tc correspond to these nonequilibrium character-
istics of the solution at different times t.

This suggestion follows qualitatively from the same time behavior of
nonequilibrium values of nz(z, t) ’ cz ’ rz (Fig. 1), and temperature
dependences of equilibrium values nz(z, h) and scattered light intensity
I(z, h) ’ rm(z, h) [19, 20]. An analysis of the data has showed that a value
nz(z, t) at the level z=0 decreases by a power relation nz(z=0, t) ’ t−x

with time t (Here x=0.8.). Far from this height, (z \ 0.3 cm), the value nz

changes much more weakly with time t. The temperature dependences of
the equilibrium values of the derivatives nz(h) ’ rz(h) ’ h−c and scattered
light intensity I ’ rm(z=0, h) ’ h−c [19, 20] are qualitatively the same as
the time behavior of nonequilibrium values nz (Here c % 5/4 [1].).

Proceeding from these observations for the case nz(z, ti)=nz(z, hi), it
is possible to propose the following relation between the temperature of
equilibrium nz(z, hi) and the time ti of nonequilibrium nz(z, ti):

nz(z=0, ti)
nz(z=0, te)

=1 ti

te

2−x

=
nz(z=0, hi)
nz(z=0, he)

=1 hi

he

2−c

. (2)

Here nz(z=0, te) — nz(z=0, he) is the experimentally measured equilibrium
value of the RIG at the temperature DT=−1.55 K (he=DT/Tc=
5.05 × 10−3), for which the equilibration time is te=14 h. From Eq. (2) the
relation between ti and hi follows:

hi(ti)=
he

tx/y
e

tx/y
i . (3)

From the data shown it follows that with c % 5/4 [1], the exponent
n=x/c % 0.6 % 1/(bd) (since b % 1/3 and d=1+c/b % 4.75 [1]). Thus,
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the relation between time ti and equilibrium temperature hi can be written
as follows: ti ’ hbd

i .
Given this, on the basis of the observed data (Fig. 1) a dynamic equa-

tion of state was studied for the inhomogeneous liquid near the phase
interface at temperatures T < Tc. The dynamic equation of state for the
supercritical region of temperatures T > Tc was studied earlier [15]. Pro-
ceeding from Refs. 1 and 9, it can be written as follows:

nz ’ cz=h−cf1
1 z

hbd
2=tg −c/bdf2

1 z
tg
2 . (4)

Here f1 and f2 are scaling functions of the scaling arguments zg
1 =

z/hbd and zg
2 =z/tg, respectively; tg= t

te
. This scaling function f2(z/tg) is

shown in Fig. 3. It is determined by using the data for nz(z, t) ’ cz(z, t)
(Fig. 1) in the range of heights z % 0 to 0.2 cm. This range of heights was
used, because it is at these small heights that the concentration of the solu-
tion Dc=(c − cc)/cc is much less than 1 (i.e., Dc=0 to 0.3). It is for such
small concentrations that the Ginzburg criterion [21] is valid. Calculations
of concentrations were made using the Lorentz–Lorenz formula for binary
solutions, as in other studies [8, 15]. Thus, for such small concentrations
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Fig. 3. Scaling function close to the phase interface of the
inhomogeneous nonequilibrium methanol–hexane solution under
gravity in the concentration range Dc ° 1.
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of the methanol-hexane solution, the three-dimensional surface nz(z, t) ’

cz(z, t) (Fig. 1a) shrinks to a single line f2(zg
2 ) (Fig. 3) of the scaling argu-

ment zg
2 :

f−1
2 (zg

2 )= C
.

n=0
Anzgn

2 =A0+A1 z/tg+ · · · (5)

Here A0=(58 ± 3) cm; A1=(310 ± 20). The valid region for this scaling
equation is marked by a line in Fig. 1a, which limits the concentrations to
Dc [ 0.3. Beyond these boundaries, where Dc > (0.4 to 0.8) % 1, the order
parameter is no longer small, and the Ginsburg criterion [21] can be
violated. In this case, the inhomogeneous system is not within the fluctua-
tion range and cannot be described by the scaling Eq. (4) of the fluctuation
theory of phase transitions [1].

4. CONCLUSIONS

An analysis of the experimental investigations carried out here shows
that the relaxation properties of a system at different fixed heights z are
determined not by a single relaxation time y(z), but by a spectrum of
relaxation times ; yi(zj, t). The average relaxation time y(z) decreases
when nearing the phase interface (z Q 0). The relaxation time y(z, t) at any
height z decreases as the system approaches an equilibrium state.

It has been shown that the equilibration process in an inhomogeneous
nonequilibrium system under gravity for small concentrations Dc=0 to 0.3
can be described by a dynamic scaling equation of state cz=tg −c/bdf2 ( z

t*).
This conclusion is confirmed by analogous results in another study [15].
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